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This paper presents the basic tools commonly used to describe the atomic

structures of quasicrystals with a specific focus on the icosahedral phases. After a

brief recall of the main properties of quasiperiodic objects, two simple physical

rules are discussed that lead one to eventually obtain a surprisingly small

number of atomic structures as ideal quasiperiodic models for real quasicrystals.

This is due to the fact that the atomic surfaces (ASs) used to describe all known

icosahedral phases are located on high-symmetry special points in six-

dimensional space. The first rule is maximizing the density using simple

polyhedral ASs that leads to two possible sets of ASs according to the value of

the six-dimensional lattice parameter A between 0.63 and 0.79 nm. The second

rule is maximizing the number of complete orbits of high symmetry to construct

as large as possible atomic clusters similar to those observed in complex

intermetallic structures and approximant phases. The practical use of these two

rules together is demonstrated on two typical examples of icosahedral phases,

i-AlMnSi and i-CdRE (RE = Gd, Ho, Tm).

1. Introduction

Quasicrystals were first observed by D. Shechtman in April

1982 using electron microscopy on a rapidly solidified alloy of

Al and Mn. The discovery was announced two years later

(Shechtman et al., 1984; Shechtman & Blech, 1985) together

with a theoretical description developed independently by

Levine & Steinhardt (1984) of a new kind of nonperiodic long-

range-ordered solid they called quasicrystals.

These structures are solids – mostly metallic alloys – the

diffraction patterns of which show sharp, well defined peaks

that distribute in reciprocal space according to point symme-

tries inconsistent with three-dimensional periodicity. The

wavevectors of the diffraction peaks can be unambiguously

written as linear integer combinations of n> 3 basic vectors

pointing on the vertices of a regular polyhedron of the

same symmetry as the diffraction pattern, q ¼
Pn

i¼1 niei,

ni 2 Z. This set of reflections forms a dense set of points

called a Z-module and was introduced to crystallography by

Janner & Janssen (1977) as the basic concept in the description

of incommensurate structures: both kinds of solids, quasi-

crystals and incommensurate phases, are quasiperiodic struc-

tures (see Esclangon, 1904; Bohr, 1924, 1925, 1926;

Besicovitch, 1932).

2. N-dimensional crystallography

A Z-module in a space of dimension d can be viewed as the

irrational projection of a n-dimensional lattice n> d where n is

the rank of the Z-module.2 The n-dimensional configurational

space En can be decomposed in two orthogonal subspaces:

En ¼ Ek � E? ð1Þ

where Ek is the subspace of dimension d that represents the

physical space and E? the subspace of dimension (n� d),

complementary to Ek and perpendicular to it, designated as

internal space in Janner & Janssen (1977). This subspace E? is

best understood (see Elser, 1996) as an order parameter space.

Here it will be designated as perpendicular space.

The relative orientations of Ek and E? in En are best

described using orthogonal projectors. Let f�g be a d-dimen-

sional orthonormal basis of Ek and f�g a (n� d)-dimensional

orthonormal basis of E?, and let fig be an orthonormal basis of

En. Designating the scalar product between jui and jvi as hujvi

(Dirac notations), we define the subspaces Ek and E? by the

following matrices:

bMMk�;i ¼ �h�jii; bppki;j ¼ �2
Pd
�¼1

hij�ih�jji; ð2Þ

1 This article forms part of a special issue dedicated to mathematical
crystallography, which will be published as a virtual special issue of the
journal in 2014. 2 If n ¼ d, the Z-module is simply a d-dimensional lattice.
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bMM?�;i ¼ �h�jii; bpp?i;j ¼ �2
Pn�d

�¼1

hij�ih�jji; ð3Þ

where

� ¼
Pn
i¼1

jh�jiij2
� ��1=2

ð4Þ

is the normalization factor.

The d� n and ðn� dÞ � n matrices bMMkð?Þ give the compo-

nents of the projection in Ek ðE?Þ of a vector expressed in the

internal bases f�g (f�g), whereas the n� n matricesbppkð?Þ give

these same components but expressed on the basis fig of En.

Applying these rules to icosahedral quasicrystals leads one

to choose E6 as the Euclidean space generated by the six

vectors defined by the vertices of a regular icosahedron in Ek
and E? as shown in Fig. 1.

Then, Ek is a three-dimensional subspace belonging to the

representation �3 and E? its orthogonal complement to six

dimensions, belonging to the representation �3 of Table 1.

Details of the geometry and indexing specific to the icosahe-

dral phases can be found in Cahn et al. (1986).

2.1. N-dimensional description

Quasicrystalline structures are defined by:

(a) the rank n of the Z-module (the dimension n of En),

(b) the n-dimensional Bravais lattice �,

(c) the n-dimensional space group G that is the set of the

hyperspace isometries g of the n-dimensional lattice that keep

Ek parallel to itself, i.e.

G ¼ fbgg 2 N ð�Þ; bgg;b��k� �
¼b00g; ð5Þ

(d) the set of atomic surfaces (ASs) – or acceptance

domains – that are defined by their geometric shape in E? and

location in the n-dimensional unit cell and are associated with

the various chemical species.

The ASs are described by a finite number of parameters

with the exception of those concerning their geometric shapes

that can a priori be infinite. Additional physical constraints

(no unphysical short distances, local isomorphism, existence of

matching rules and easy phason relaxation) are useful to

reduce them to a finite number. Then, ASs are polygons

(decagonal phases) or polyhedra (icosahedral phases) parallel

to E?.

Density and stoichiometry are easily computed in this

framework: if Vt is the total volume of the ASs in E?, the jth

chemical species has concentration cj ¼
Pp

k¼1 v
j
k=Vt where v

j
k

are the volumes of the p ASs corresponding to the atomic

species j.

2.2. Basic modelling

For icosahedral quasicrystals, the ASs are polyhedra in

three-dimensional space parallel to E?. We describe them

here as a union of convex polyhedra where most of them are

simply described as a set of tetrahedra in the elementary

sector attached to a given six-dimensional site. The complete

polyhedron is obtained by applying the elements of the little

group of the six-dimensional site to the generating tetrahedra.

For example, the canonical triacontahedron (convex hull of

the projection in E? of the six-dimensional unit cell) centred

at the origin ð0; 0; 0; 0; 0; 0Þ is generated by applying the 120

symmetry elements of m35 to the tetrahedron Tc ¼ f½0; 0; 0�,

½0; 0; 1þ ��, ½0; 1; 1þ ��, ½�; 0; 1þ ��g, the vertices of which

are the projections in E? of the six-dimensional nodes,

respectively, a ¼ ð0; 0; 0; 0; 0; 0Þ, b ¼ ð0; 1; 1; 0; 1; 1Þ=2,

c ¼ ð1; 1; 1; 1; 1; 1Þ=2 and d ¼ ð1; 1; 1; 1; 1; 1Þ=2. With no loss

of generality, we arbitrarily give to this canonical triaconta-

hedron in E? the volume Vt ¼ �
3 ¼ 1þ 2� to fix the length

scale in E?.

All known icosahedral phases belong to either one of the

two types of six-dimensional lattices, Pð1Þ and Fð2Þ, defined as

(see Cahn et al., 1986): Pð1Þ ¼ fðn1; n2; n3; n4; n5; n6Þ ni 2 Zg

and Fð2Þ ¼ fðn1; n2; n3; n4; n5; n6Þ ni 2 Z,
P

i ni ¼ 0 mod 2g.

The diffraction experiments have shown that the major ASs

of all presently known icosahedral phases are located at a few

high-symmetry special points3 of m35 in six dimensions that

are:4

n ¼ ð0; 0; 0; 0; 0; 0Þ n0 ¼ ð1; 0; 0; 0; 0; 0Þ

bc ¼ 1=2ð1; 1; 1; 1; 1; 1Þ bc0 ¼ 1=2ð1; 1; 1; 1; 1; 1Þ

where, for Pð1Þ structures, n0, bc0 are, of course, identical to,

respectively, n and bc.
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Table 1
Irreducible representations of the point group 235.

1̂1 (5̂5; 5̂54) (5̂52; 5̂53) 2̂2 (3̂3; 3̂32)

A1 1 1 1 1 1
�3 3 � 1� � �1 0
�3 3 1� � � �1 0
�4 4 �1 �1 0 1
�5 5 0 0 1 �1
�6 6 1 1 �2 0

Figure 1
Orientations of the vertices of the basic icosahedron in Ek and E?.

3 Special points are positions in the unit cell with centred little groups, i.e.
positions with no degree of freedom.
4 Sometimes with the addition of small ASs located at the mid-edge
1=2ð1; 0; 0; 0; 0; 0Þ that will not be considered here.



The first request for plausibly modelling the atomic struc-

ture of a quasicrystal is the density of the model: the ASs must

be large enough to fit the experimental density. To have an

order of magnitude, we consider that a standard metallic atom

in a crystal occupies roughly 0.015 nm3, the density d of nodes

should be in the order of d ’ 66 nm�3. Thus, using the

previous length scaling in E?, we obtain the density of atom

sites per nm3 in real space as

dA3 ¼
�

�ð� þ 1Þ
Vt ð6Þ

where � is the geometric normalization factor [equation (4)],

A is the six-dimensional Pð1Þ lattice parameter expressed in

nm, � takes values 1=2, 1 or 2 for, respectively, Fð2Þ, Pð1Þ and

Ið1Þ six-dimensional lattice types, and Vt is the total volume of

the ASs in the six-dimensional unit cell. Thus, the total volume

of the ASs is roughly 66A3=� per primitive unit cell.

For example, one finds Vt ’ 16:6 for the F-type phase of

i-AlCuFe with parameter A ¼ 0:63146 nm and Vt ’ 17:5 for

i-AlPdMn of parameter A ¼ 0:645 nm. For a larger para-

meter, like i-CdYb primitive structures with A ¼ 0:75 nm, the

total AS volume jumps to Vt ’ 27:8. This shows that the ASs

used for these last Pð1Þ structures are significantly larger than

those used for the latter Fð2Þ structures. Fig. 2 shows the ASs

chosen to model the icosahedral structures having small six-

dimensional parameters around 0.65 nm. They are determined

in noting that short atomic distances are observed along the

fivefold and threefold directions according to:

(a) In the fivefold direction

�ðn� n0Þ : ð2; 1; 1; 1; 1; 1Þ ½ð18� 11�Þ1=2; 0:1669 A�

�ðn0 � bcÞ : ð1; 1; 3; 1; 1; 1Þ=2½ð7� 4�Þ1=2; 0:2701A�:

(b) In the threefold direction

�ðn� bc0Þ : ð3; 1; 1; 3; 3; 1Þ=2 ½ð15� 9�Þ1=2; 0:2459A�:

Imposing the ASs located at these various locations to have no

intersections once projected in E?, we obtain the shapes of the

ASs given in Fig. 2, hereafter called model A. The total volume

per Pð1Þ unit cell for the Fð2Þ is ð11þ 14�Þ=2 ’ 16:826 and for

the Pð1Þ set ð77þ 106�Þ=15 ’ 16:567, in excellent agreement

with what is expected from equation (6).

Now, for A parameters larger than 0.74 nm, the distance

n0 � bc along the fivefold direction becomes acceptable

(0.2 nm). This relaxes one constraint and leads to the new set

of ASs shown in Fig. 3, hereafter called model B. Here, the

total volume per Pð1Þ unit cell for the Fð2Þ is ð10þ 9�Þ ’
24.562 and for the Pð1Þ set ð103þ 164�Þ=15 ’ 24.557, values

that are a little smaller but in rough agreement with the value

given by equation (6).

Both sets A and B form a nicely connected network of ASs

closed at short distances as shown in Fig. 4. The n� n [even

connections in Fð2Þ structures] connections are along the

twofold direction ð1; 1; 2; 0; 2; 0Þ of jump distance 0:284A, and

n� n0 [odd connections in Fð2Þ structures] connections are

along the fivefold direction ð2; 1; 1; 1; 1; 1Þ of jump distance
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Figure 2
The set A of global ASs used to model icosahedral structures with a small
six-dimensional parameter around 0.65 nm. The shape of the AS located
at the node nðn0Þ for the Pð1Þ structure is due to Henley (1986). This Pð1Þ
set can be used for the Fð2Þ structure by assigning different atomic species
between n and n0, and between bc and bc0. The volumes of the ASs are,
for Fð2Þ: Vn ¼ 5þ 8�, Vn0 ¼ 5þ 6�, Vbc ¼ 1, Vbc0 ¼ 0; for Pð1Þ:
Vnðn0 Þ ¼ 5þ 7�, Vbcðbc0 Þ ¼ ð2þ �Þ=15.

Figure 3
The set B of global ASs used to model icosahedral structures with a large
six-dimensional parameter above 0.7 nm. This set differs from set A in the
global ASs located on bc. Here, too, the Pð1Þ set can be used for
modelling the Fð2Þ structure. The volumes of the ASs are, for Fð2Þ:
Vn ¼ 5þ 8�, Vn0 ¼ 5þ 6�, Vbc ¼ 2þ 4�, Vbc0 ¼ 8; for Pð1Þ:
Vnðn0 Þ ¼ 5þ 7�, Vbcðbc0 Þ = (28 + 59�)/15.

Figure 4
Connections between ASs for the Pð1Þ models A and B: (a) n sites
connect together according to either the fivefold direction by odd
connections at �ð18� 11�Þ1=2A ¼ 0:167A, or the 2f direction through
even connections at �ð20� 12�Þ1=2A ’ 0:284A directions; (b) for the A
model, the connections n� bc occur all along the fivefold direction at
�ð7� 4�Þ1=2

¼ 0:270A. (c) Finally, for the B model, the connection n� bc
occurs along the threefold direction at �ð15� 9�Þ1=2 = 0.246A.



0:167A, whereas n� bc occurs along the fivesfold direction

ð3; 1; 1; 1; 1; 1Þ=2 of jump distance 0:270A and, additionally

for model B, there is a connection along the threefold direc-

tion ð1; 1; 1; 3; 3; 3Þ=2 with a jump distance 0:246A. These four

connection types define the set of thermodynamically stable

phasons generated in these models.

3. Local atomic configurations

Beyond the density of the structural models, it is important to

characterize their local atomic configurations. Hence, quasi-

crystals described by ASs aligned along E? such that �
projects as a uniformly dense set of points in E? have the two

following basic properties:

(i) The uniformity property states that any finite packing of

tiles which appears in a given quasiperiodic tiling appears

infinitely many times in the same tiling with a well defined

frequency; for any given finite radius r, there exists only a finite

number of different atomic configurations.

(ii) The local isomorphism property asserts that any finite

packing of tiles which appears in a given quasiperiodic tiling in

Ek appears with the same frequency in all tilings generated by

any other cuts parallel to Ek.

Because of these two theorems, the local structure of

models with flat atomic surfaces can be exhaustively described

by a list of all possible local atomic configurations within a ball

of radius r, each with its own frequency. The larger the radius r

is, the finer is the crystallographic description.

It is best to analyse these atomic local configurations

directly in E? where all the geometrical environments have a

finite-size image that can be calculated exactly. The natural

way of achieving this is the cell (Oguey et al., 1988) or ‘Klötze’

decomposition (Kramer, 1988; Arnol’d, 1988) that is based on

the simple idea that two actually present atoms in the structure

are issued from two atomic surfaces, the projection in E? of

which has a non-empty intersection (see Fig. 5). Thus, studying

how atomic surfaces projected in E? intersect each other

suffices to determine what kind of clusters are present in the

real structure and their frequencies are proportional to their

intersection volume in E?.

Let x0 and x1 be two sites of the structures generated by T0

and T1 atomic surfaces located at two hyperlattice nodes, say

�0 and �1. We have x0 ¼ b��k�0 ¼ �0k and x1 ¼ b��k�1 ¼ �1k. The

two points are connected by the vector x1 � x0 in Ek corre-

sponding to the hyperlattice node t ¼ �1 � �0 that has

perpendicular component t? ¼ b��?t. Thus the two points x0

and x1 being simultaneously present in the structure, the two

atomic surfaces T0 and T1 displaced by t? in E?, must have a

non-zero intersection. All the pairs of the type (x0; x1) are thus

generated by the subset of atomic surfaces defined by

T0 \ T1ðt?Þ. This is the existence domain for the pair ðx0; x1Þ:

Tðx0; x1 ¼ x0 þ tkÞ ¼ T0 \ T1ðt?Þ: ð7Þ

The relative density (number of x0 points that are attached to

such a pair divided by the total number of x0 points) is given

by

�ðT0; tkÞ ¼
jT0 \ T1ðt?Þj

jT0j
ð8Þ

where jTij designates the volume of the polyhedron Ti.

More generally, if we consider a set containing a finite

number N of points of the structure, say x0; x1; . . . ; xN

located at t1
k; t2
k; . . . ; tN

k with x0 taken as the origin, the

existence domain of this set is given by

T0 \ T1ðt
1
?Þ \ T2ðt

2
?Þ \ . . . \ TNðt

N
?Þ with the relative density

�ðT0; t1
k; . . . ; tN

k Þ ¼
jT0 \ T1ðt

1
?Þ \ . . . \ TNðt

N
?Þj

jT0j
: ð9Þ

As an example, Fig. 6 shows the basic vertex decomposition

in the elementary sector of the standard three-dimensional

Penrose canonical tiling obtained by the intersections of the

canonical triacontahedron onto itself under the fivefold

translation ð1; 0; 0; 0; 0; 0Þ. Superimposing all 12 equivalent

translated triacontahedra on top of the central one leads to a

decomposition into nine different cells, corresponding to the

nine different vertex configurations to ð1; 0; 0; 0; 0; 0Þ neigh-

bours.
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Figure 5
Principle of the cell decomposition on the one-dimensional Fibonacci
sequence in a two-dimensional space: Ek is any horizontal line and E? any
vertical one. The ASs (vertical segments in blue) define two kinds of two-
dimensional area. Each time Ek passes through a blue square it generates
a short-distance S pair of sites, and each time it passes through a yellow
square it generates a long-distance L pair of sites. Thus the initial AS can
be decomposed into three cells (segments): the two green segments
collect all points that have an S bound on one side and an L on the other,
and the purple segment that generates sites that have L bounds on both
sides.

Figure 6
By intersection with the 12 copies of itself along the fivefold direction
ð1; 0; 0; 0; 0; 0Þ, the canonical triacontahedron decomposes into nine cells
that correspond to the different vertex configurations. Cells are
represented here inside the elementary tetrahedron expanded for
showing the various cells. Each configuration appears in the three-
dimensional tiling with a frequency proportional to the volume of the
corresponding cell.



3.1. Atomic clusters

Our second guide to the structural determination of icosa-

hedral quasicrystals is the fact that their known approximant

phases all exhibit typical high-symmetry atomic clusters (ACs)

that are expected to be also present in the quasicrystalline

parent phase and which have been discussed in particular by

Steurer (2006), Henley et al. (2006), and studied in the six-

dimensional context by Steurer & Deloudi (2012). Our

present goal is to reshape the previously defined A and B basic

sets of ASs in order to generate as large as possible ACs with

the highest possible symmetry.

We define an atomic cluster as a set of atomic positions

characterized by the fact that if any one of the atoms of the AC

is present in the structure then all others of the AC are also

present. Let T0 be the AS, located at some high-symmetry

special point of the hyperlattice, that

generates the centres of the ACs; each

other point of the AC covers a domain

that is the exact5 copy of T0, and

is entirely contained in the atomic

surfaces. Thus, the ASs must contain the

union of these copies, each corre-

sponding to one point of the AC. The

global AS must then have the high

symmetry of the cluster and therefore

be attached to a high-symmetry special

point of the hyperlattice.

If the AC is made of N orbits, each

orbit j of Mj surrounding atoms char-

acterized by translations b��ktk
j :

AC ¼ [N
j¼1 [

Mj

k¼1 b��ktk
j ; ð10Þ

the global AS, say ASAC, is obtained by

the union of all T0’s located in E? atb��?tk
j sites in six dimensions:

ASAC ¼ [
N
j¼1 [

Mj

k¼1 T0ðb��?tk
j Þ: ð11Þ

The construction algorithm of ASAC is therefore the following:

(a) starting from T0, that is the AS generating the centre, we

copy it on all six-dimensional nodes tk
j corresponding to the

atoms of the cluster in Ek;

(b) we then project these copies on E? to obtain the set

[equation (11)] of T0ðb��?tk
j Þ; this set forms the searched ASAC

on the initial node;

(c) the ASAC is finally copied on all equivalent six-dimen-

sional nodes.

Let us illustrate the process by a simple one-dimensional

example shown in Fig. 7. We search for the AS that generates

a set of ACs made of a green atom centre generated by T0

(Fig. 7a), two blue atoms at a distance b��kt1 and two red atoms

at a distance b��kt2. We copy T0 at t1 and t2 and their equivalent

nodes by symmetry (here simply the inversion �t1 and �t2)

and then project these copies on E? (Fig. 7b), i.e. T0ðb��?t1Þ,

T0ð�b��?t1Þ and T0ðb��?t2Þ, T0ð�ðb��?t2Þ. This eventually defines a

global AS made of five cells in E?: the central green segment,

two adjacent red and two blue in the periphery as shown

in Fig. 7(c).

3.2. Maximal density and largest high-symmetry atomic
clusters

The choice of T0 is a priori arbitrary but an optimized

choice is obtained when ASAC has the largest possible volume,

i.e. when the cells T0ðb��?tk
j Þ in equation (11) have the smallest

intersections.

For icosahedral phases, the choice of the Henley’s truncated

triacontahedron (Henley, 1986) used to model Pð1Þ structures,

shown in Figs. 2 and 3 at the node n and scaled by ��2 as

generator T0, is extremely efficient for ensuring a maximum

covering on n and bc. Fig. 8 shows the few first ASs that
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Figure 7
One-dimensional example of constructing (b) the proper ASs (c) that generate the atomic cluster
with a green atom at the centre generated by T0 (a), blue atoms at distance t1;k and red atoms at
distance t2;k. See text for further details.

Table 2
Characteristics of the main ASs shown in Fig. 8 defining the icosahedral
orbits around the origin n.

ASs with bold numbers intersect the basic ASs of models A or B. ASs with the
same superscript form a triacontahedron (2 + 7, 8 + 14 and 12 + 15).

AS No.
Located
at

Six-dimensional
translation
½N;M� : ðn1; n2; . . . ; n6Þ

Multiplicity
�

Radius
in A unit

1 n [20,12]:(0,2,�1,0,�2,�1) 30 0.284
2� n0 [6,�3]:(1,0,0,�1,�1,0) 20 0.398
3 bc [15,�9]:(�3,1,1,3,3,1)/2 20 0.246
4 bc0 [7,�4]:(1,1,�3,1,�1,1)/2 12 0.270
5 n [4,0]:(0,1,0,0,�1,0) 30 0.744
6 n0 [8,�4]:(0,�1,1,0,1,1) 30 0.459
7� bc [3,�1]:(1,1,�1,1,�1,1)/2 12 0.437
8y bc0 [3,0]:(�1,1,1,1,1,1)/2 20 0.644
9 n [12,�4]:(1,1,�1,1,�1,1) 12 0.874
10 n0 [14,�7]:(1,0,�1,1,0,2) 60 0.608
11 bc [7,�1]:(1,�1,1,1,1,3)/2 60 0.862
12z bc0 [3,4]:(1,1,1,1,�1,1)/2 12 1.144
13 n [12,�4]:(�1,0,2,0,1,0) 60 0.874
14y n0 [2,1]:(1,0,0,0,0,0) 12 0.707
15z bc [3,3]:(1,1,1,�1,�1,1)/2 20 1.042
16 bc0 [7,0]: (1,�1,�3,1,1,1)/2 60 0.984

5 Else there would be missing atoms of the AC around certain centres, or, on
the contrary, missing centres for some ACs.



generate high-symmetry atomic orbits defined in Table 2 using

this generator.

When the union of the T0 fills all the global ASs of the

model, then the corresponding cluster covers all the atoms of

the model. This is a very special case: besides clusters of one

point that cover obviously any struc-

tural model, edges of many tilings (two-

dimensional and three-dimensional

Penrose tiling, Amman–Beenker tiling)

provide covering clusters of two points.

In all other known cases, except the

fascinating decagonal covering discov-

ered by Gummelt (1996), atomic clus-

ters do not cover the entire structure of

the quasicrystal, meaning that real

quasicrystals cannot be described by the

atomic clusters only, in the sense that

there are always remaining atoms that

do not belong to the clusters.

The ASs that intersect or are inside

the basic global ASs of models A or B

are noted in bold on the left column of

Table 2. In Fig. 8, the ASs T1, T3, T4, T6,

T9, T10 and T13 are largely outside the

ASs of the models A and B. They are

therefore most likely not to be used in

standard modelling except for very

large six-dimensional lattice parameters.

On the contrary, the ASs that are most

plausible in modelling the icosahedral

phases are T5, T7, T12, T14 and T15 since

they are inside the global ASs. Finally,

the ASs T2 and T8, that generate two

homothetic dodecahedra in the � ratio,

intersect the basic global ASs but do

have parts outside them.6 Thus, using

either of these two orbits in the

modelling requires reshaping the large

ASs to avoid the creation of atoms at

too short a distance from each other.

This is easily achieved by noticing that

T2 and T8 share one exact T0 when

displaced by the n� bc translation ð1; 1; 1; 3; 3; 3Þ=2 as shown

in Fig. 9(a) (red arrow). Hence, keeping one of these two ASs

in the modelling simply requires one to remove the latter from

the global ASs either n or bc as shown in Fig. 9(b). If the full

small dodecahedron is retained in the model corresponding to

the whole T2 of volume 20jT0j, then the global AS at n is

increased by 13jT0j but T8, also of volume 20jT0j, is removed,

thus reducing the global AS at bc by 13jT0j. On the contrary, if

the large dodecahedron is retained in the model, corre-

sponding to T8, then the bc is increased by 7jT0j, but T2 is

removed thus reducing n by 7jT0j. Both cases are different

models having the very same density. This is shown in Fig. 10.

Model (a) is the initial B model defined by maximizing the

density of the structure [total volume ð103þ 164�Þ=15 ’

24.55_7]. Since it contains the ASs T5, T7 and T14, the model

generates around the node sites high-symmetry orbits of a

small icosahedron (T7), an icosidodecahedron (T5), a large

icosahedron (T14), plus a partial small dodecahedron of 7 to 20
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Figure 9
(a) ASs T2 and T8 intersect according to an exact T0 subcell (red arrow)
once displaced from each other by ð1; 1; 1; 3; 3; 3Þ=2: (b) The various
intersections of T2 and T8 with the global ASs of model B show that
keeping one complete orbit in a model requires removing the other from
the model. This is achieved at constant total volume.

Figure 8
ASs attached to special points n, n0, bc and bc0 [merge n and n0, bc and bc0 for Pð1Þ structures]
generating the orbits of atomic clusters of radius smaller than the six-dimensional lattice parameter
A described in Table 2. The ASs contained in the global ASs of model B are enclosed in solid-line
rectangles; those enclosed in dashed-line rectangles are partially contained in the global ASs.

6 The remaining ASs T11 and T16 will not be discussed here.



atoms (T2) and another partial dodecahedron � times larger of

13 to 20 atoms (T8). These atomic clusters are encapsulated in

large triacontahedra generated by T12 (icosahedra) and T15

(dodecahedra) forming the external shells of connections

between two (by sharing vertices of the dodecahedra) and

three (by sharing vertices of the icosahedra) clusters.

Model (b) is the model that maximizes the number of high-

symmetry orbits irrespective of atoms possibly located at too

short a distance from each other. It contains all previous

complete orbits including those coming from ASs T2 and T8.

These are the ASs proposed by Takakura et al. (2004) for

modelling the atomic clusters of i-CdYb quasicrystals.7 This

model is very appealing but it generates atoms at short

distances with a density that is still much too low [total volume

94ð�37þ 23�Þ ’ 20:189], roughly 82.2% of model (a) because

it generates only the atoms of the ACs. A remarkable fact is

that this set of ASs built with T2, T3, T14 and T0 at n, and T6, T5

at bc is the largest possible set of non-overlapping T0 inter-

secting the global set B. Thus, the atomic cluster drawn

for model (b) of Fig. 10 is the largest

possible cluster generated by T0 in which

each atom belongs to one and only one

cluster. It is made of a small inner tria-

contahedron generated by T2 (dodeca-

hedron) + T7 (icosahedron), then a �
times larger triacontahedron generated

by T8 (dodecahedron) + T14 (icosahe-

dron) and finally a large icosidodeca-

hedron generated by T5. All atomic

clusters identified so far in real icosa-

hedral phases are a subset of this

general ideal cluster and for all real

structures, T14 – generating a nicely

connected set of icosahedra – is the

privileged cell for the chemical ordering

of the transition metal (Mn, Fe) or rare

earth (Yb, Gd, . . .).

Models (c) and (d) are two ways

of increasing the number of high-

symmetry orbits while keeping a

constant density. The first one (c)

consists of completing the large dode-

cahedron by using the complete orbit

from AS T8 on the bc and thus removing

the corresponding fraction on n; the last

one (d) consists of keeping the complete

orbit of T2 on the node and removing

the corresponding part on the bc in

order to generate a complete small

internal triacontahedron. In model (a),

only 47.2% of the atoms belong to

a high-symmetry cluster, whereas, of

course, this is 100% for model (b) and

64.7% for models (c) and (d). These last

two models are therefore a good compromise for generating

large high-symmetry atomic clusters together with an accep-

table density.

4. Examples

We shall now illustrate, with two examples, the use of these

geometric tools to construct simple ideal models of icosa-

hedral phases that would be used as initial models for struc-

ture refinement or as plausible acceptable models for

discussing and understanding some physical properties of

those materials.

4.1. The case of i-AlMnSi

The alloy i-AlMnSi was discovered immediately after the

original Shechtman alloy in the Al–Mn system. It is obtained

by rapid solidification of a mother alloy of composition

Al73Mn21Si6. It has a primitive six-dimensional lattice with six-

dimensional parameter A ¼ 0:6497 nm and a volumic mass

around � ¼ 3:62 g cm�3. On annealing above 973 K, the alloy

transforms into crystalline 	 phase plus traces of aluminium.
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Figure 10
(a) Set B and corresponding AC inner shells of two incomplete dodecahedra corresponding to T2

and T8; (b) set of orbits of Table 2 intersecting the set B; this generates the maximum possible
cluster including short distances between some atoms; (c) redistribution generating two complete
orbits: an icosahedron and a complete large dodecahedron; (d) another distribution generating a
complete icosahedron and a complete small dodecahedron. Structures generated by models (a), (c)
and (d) have exactly the same density.

7 In their notations, bc and n are inverse from ours; our notations, however, are
consistent with all the previous descriptions of icosahedral phases.



Beyond this relatively good quality, this

alloy presents a cubic phase noted

�-AlMnSi close to the composition

Al72:5Mn17:4Si10:1 of space group Pm3,

almost Im3 with lattice parameter

A ¼ 1:268 nm (Cooper & Robinson,

1966). This cubic phase is the first cubic

approximant8 of the icosahedral phase

that is expected to be Im3 with lattice

parameter A ¼ 1:265 nm.

The � phase is principally made of

two (almost) identical Mackay clusters

centred on ð0; 0; 0Þ and ð1; 1; 1Þ=2.

These two clusters have an empty centre

and are built with three orbits: a small

icosahedron of average radius 0.245 nm

filled with Al, an almost twice larger

icosahedron of Mn of average radius

0.478 nm and an icosidodecahedron of

Al of average radius 0.475 nm.

After first six-dimensional modelling using spherical atomic

surfaces (see Cahn et al., 1988; Gratias et al., 1987), a very

interesting six-dimensional model has been proposed by

Duneau & Oguey (1989) using the truncated triacontahedron

at n and the small dodecahedron at bc seen in the inset of

Fig. 11.

The construction of the present six-dimensional model

follows the one proposed by Duneau & Oguey (1989) but uses

here the optimized ASs based on the Henley polyhedron.

Because of the value of the six-dimensional parameter

A ¼ 0:6497 nm, we choose model A to construct the model

shown in Fig. 11. In this figure AS 1 on n is first filled with a

mixture of Al and Si. To generate the Mackay clusters similar

to those of the � phase we first make the centres of the nodes

empty by removing the small T0 (AS 2) from AS 1. We then

use the subcell T14 of Fig. 8 to generate the Mn large icosa-

hedron (AS 3) filled with Mn atoms. Since the AS T5 of Fig. 8

generating the icosidodecahedron of (Al,Si) is entirely

contained in the large surface located at n, we do not need to

add anything to the model [the AS 4 in Fig. 11 is drawn just for

explicitly recalling the presence of the icosidodecahedron of

(Al,Si) in the structure]. The last task is the construction of the

cell generating the inner (Al,Si) icosahedron: this is achieved

using the AS T7 of Fig. 8 (AS 7 in Fig. 11) filled with (Al,Si) on

bc. Because, as we have previously shown, this AS extends

outside the global AS at bc, we have to remove the part of the

AS at n that would generate atoms too close from this icosa-

hedron; this is achieved by removing T2 (the AS 5 from the

large AS 1 of Fig. 11). Finally, we fill the small AS 6 at bc with

Mn atoms.

The model has a total primitive volume Vt = 5 + 7� +

4(�37 + 23�) + (2 + �)/15 = (�2143 + 1486�)/15 ’ 17:4265

with a theoretical density � = 3.42 g cm�3 associated with

the composition (Al,Si)83:83Mn16:17. Compared with the

experimental composition of (Al73Si6)Mn21, we observe that

we must replace Al in the model by an average atom

Al ¼ ð73Alþ 5Mn þ 6SiÞ leading thus to the proper stoi-

chiometry and a volumic mass of 3.59 g cm�3, close to the

experimentally measured density. The atoms belonging to

the Mackay clusters (see Fig. 12) correspond to a total volume

of 54ð�37þ 23�Þ and thus represent a fraction of

54ð�37þ 23�Þ=Vt ’ 0:665548, i.e. roughly 2=3 of the total

number of atoms. This is large enough for the Mackay clusters

to qualify as being the typical atomic clusters in that structure

but it is clearly not enough to reduce the structure to a simple

aggregation of Mackay clusters. The resulting icosahedral
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Figure 11
The simplest model of i-AlMnSi that generates atomic clusters reassembling the Mackay clusters
observed on the � approximant structure. The volumes of the ASs are V1 ¼ 5þ 7�,
V2 ¼ �37þ 23�, V3 ¼ 12V2, V4 ¼ 30V2, V5 ¼ 7V2, V6 ¼ ð2þ �Þ=15, V7 ¼ 12V2. In the inset are
the main atomic surfaces at n and bc of the initial model of Duneau & Oguey (that are replaced in
our model by AS 1 and 6).

Figure 12
Top: comparison between the Mackay clusters (a) as generated by the
icosahedral model, (b) as determined in the cubic � phase. Bottom: the
neighbourhood of the Mn atoms in (a) the icosahedral model and (b) the
� phase: both have a deformed icosahedron of aluminium, the strongest
deformation being observed for the icosahedral model.

8 In the present context, an approximant structure is a periodic structure
obtained from parent quasicrystals but the irrationality is replaced by a
rational approximation; in the present case, the golden mean � is replaced by
the rational fraction 1/1.



structure is constructed on the two Z-modules centred on n

and bc sites in Ek. The Mn atoms distribute on the vertices of a

network of large icosahedra linked by octahedra along the 3f

directions.

This model is of course an idealized structure that deserves

further significant refinements. In particular, the Mackay

clusters determined by standard crystallography in the � phase

compared with those generated by the model are slightly

different as shown in Fig. 12. The correction factors (see

Table 3) for the orbit’s radii on the Mackays between model

and average values measured from the � phase are r� ¼ 	rQC

with 	 ¼ 0:86 for the inner icosahedron of Al, 	 ¼ 1:045 for

the outer icosahedron of Mn and 	 ¼ 0:971 for the external

icosidodecahedron of Al as shown in Fig. 12.

4.2. The case of i-CdRE (RE = Gd, Ho, Tm)

The discovery of the i-Cd85Yb15 icosahedral phase by Tsai et

al. (2000) has opened intense new structural studies on binary

primitive icosahedral phases with a large six-dimensional

lattice parameter (Takakura et al., 2004). In particular, the i-

CdRE (RE = Gd, Ho, Tm) family of composition close to the

i-Cd89RE11 type presents a six-dimensional lattice parameter

of A ¼ 0:7972 nm for RE = Gd

with interesting magnetic properties

(Goldman et al., 2013).

The main structural information has

been given by Takakura et al. (2004)

using a six-dimensional description with

the ASs of Fig. 8, T2, T5, T14 on the node

n, and T7 and T8 on the site bc (see

Table 2). These ASs, regrouped in

Fig. 10(b), generate a high-symmetry

atomic cluster containing the maximum

number of orbits (see Fig. 10b, right

column) as described in the previous

section. Adding ASs T12 and T15 of Fig. 8

(Table 2) to the model generates the

outer triacontahedron that ensures the

connections between clusters. This

addition, however, is far from being

enough to describe the entire structure.

The main question at that level of

course is to describe the other atoms that are not in the

clusters.

In our method, we consider the atomic structure globally

including ‘glue’ atoms, not only the atomic clusters. So, we

choose the set B of large ASs as our starting point to ensure a

reasonable atomic density. As already noticed, these large ASs

already contain many high-symmetry orbits (see Fig. 10a). We

optimize their number by using the full AS T8 on bc and thus

removing the corresponding part on n exactly as in the case of

i-AlMnSi. The resulting model is shown in Fig. 13. The model

has a composition of Cd0:8942RE10:58 and a density of

4.80 g cm�3 for RE = Gd. The RE atoms are distributed on

a network of large icosahedra exactly like the Mn atoms in

i-AlMnSi and i-AlPdMn since the chemical decoration of the

node n is identical to that of the previous example of

i-AlMnSi. This starting model, of course, like the preceding

one of i-AlMnSi, shall certainly require substantial refinement

to compare properly to the real structures; but all the basic

ingredients are there, including the ‘glue’ atoms.

5. Conclusion

N-dimensional crystallography has proven to be a very natural

and efficient tool to decipher the atomic structures of quasi-

crystals. Because it is based on the very definition of quasi-

periodicity, the ideal models it generates are perfectly

quasiperiodic and cannot as such properly represent the real

objects. They should be considered as plausible initial perfect

models for starting refinements using experimental data.

We have seen that one of the major features of having ASs

located at special points in six dimensions is the existence in

the structure of high-symmetry atomic clusters. This allowed

us to focus our strategy on two simple goals: searching for

maximum density together with the maximum number of

complete orbits of large highly symmetric atomic clusters.

These rules lead to a surprisingly small number of possibilities

for each structure as demonstrated by the two examples of
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Figure 13
Simple model for the newly discovered i-Cd88:5RE11:5 (RE = Gd, Ho, Tm) primitive icosahedral
phase. This model contains high-symmetry atomic clusters made of an inner icosahedron (that has
to be changed into a highly disordered central tetrahedron), then a dodecahedron, the icosahedron
of RE atoms, a large icosidodecahedron and finally an external triacontahedron linked to two or
three other identical clusters.

Table 3
Comparison of the Mackay clusters of the � phase of lattice parameter
A� ¼ 1:268 nm with those in the present icosahedral model of theoretical
lattice parameter A� ¼ 1:265 nm.

The radii of the orbits of the Mackay clusters are given in nm. The distances
between two closest Mn atoms are d ¼ 0:483 nm in the icosahedral QC model
and in the � phase d ¼ 0:512 for M and d ¼ 0:506 for M0.

Model QC �ðM=M0Þ 	

Icosahedron Al 0.284 0.242/0.246 0.86
Icosahedron Mn 0.459 0.486/0.473 1.045
Icosidodecahedron Al 0.483 (0.472, 0.461)/(0.474, 0.479) 0.971



i-AlMnSi with set A of global ASs and i-CdRE (RE = Gd, Ho,

Tm) with set B for global ASs.

APPENDIX A
Diffraction pattern

Diffraction calculations are obtained by explicitly writing the

Fourier transform of the density distribution obtained by the

cut algorithm: the carrier of the Fourier spectrum is the Z-

module obtained by the projection of �� in E�k : it is a dense

enumerable set of Bragg peaks. The diffracted amplitude

associated with a reflection q ¼ ðqk; q?Þ 2 K� is given by

FðqkÞ ¼
P

j

fjðqkÞe

jðq?Þ expð2i�q � rjÞ ð12Þ

where j runs over the ASs in the n-dimensional unit cell that

defines the quasicrystal, fjðqkÞ is the atomic form factor of the

atom j, e

jðq?Þ the Fourier transform along E? of the char-

acteristic function of the jth AS and rj its location in En. This

equation is identical to the usual expression in standard

crystallography but with the additional e

jðq?Þ term that is

intrinsic to quasiperiodicity.

A few simple formulae allow us to easily compute the

diffraction patterns associated with atomic clusters.

First of all, let T1 and T2 be two homothetic ASs in E? with

T2 ¼ 	T1 where 	 is the linear ratio between T1 and T2 so that

for the volumes VT2
¼ 	3VT1

. Let 
̂
1ðq?Þ be the Fourier

transform of the characteristic function 
1ðr?Þ of T1 that takes

the value 1 inside T1 and zero outside in E?:


̂
1ðq?Þ ¼
R

r?2T1

expð2i�q? � r?Þ d
3r?: ð13Þ

The Fourier transform 
̂
2ðq?Þ is obtained by noticing that

q? � r? ¼ 	
�1q? � 	r? so that


̂
2ð	
�1q?Þ ¼ 	

3
̂
1ðq?Þ: ð14Þ

The calculation of the diffraction amplitudes associated with

the atomic clusters is particularly simple in the case where the

ASs T0ðb��?tk
j Þ in equation (11) have no intersections:

cASASACðqk; q?Þ ¼ 
̂
0ðq?Þ
PN
j¼1

fjðqkÞ
PMj

k¼1

expð2i�qk � t
k
jkÞ ð15Þ

where fjðqkÞ are the atomic form factors of the chemical

species j.

For the case where the ASs T0ðb��?tk
j Þ have non-empty

intersections, the calculation is slightly more complicated.

Observing that the characteristic function of the intersection

between two polyhedra T1 and T2 is the product 
1ðr?Þ
2ðr?Þ,

the Fourier transform of the union of the two polyhedra is

written:

b

T1[T2
ðqÞ ¼ b
1
1ðqÞ þ b
2
2ðqÞ �

P
q02��

b
1
1ðq� q0Þb
2
2ðq
0Þ ð16Þ

so that

b

T1[...[TN
ðqÞ ¼b

T1[...[TN�1

ðqÞ þ b
N
NðqÞ

�
P

q02��
b

T1[...[TN�1

ðq� q0Þb
N
Nðq
0Þ: ð17Þ

This recurrent formula allows the explicit calculation of the

diffraction amplitude [equation (15)] for overlapping ASs.
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